
https://www.science.org/doi/10.1126/science.adc9127

研究 B 细胞免疫力和抗体交叉免疫力来监控SARS-CoV-2 变异株传播的重要性

MAR. 2, 2023

Studying B-cell immunity and cross-reactive immunity to tackle SARS-CoV-2 variants

YANG XU MD, PhD, Director, Laboratory of Special Diagnosis, Shanghai University of Medicine and Health Sciences

GANG HUANG MD, Director, Shanghai University of Medicine and Health Sciences

To The Editor:

Antibody evasion by SARS-CoV-2 Omicron variants BA.4/5 has been shown to be a major problem in the pandemic [1]. Therefore, addressing SARS-CoV-2 variants through cross-reactive specific immunity has become a key area of clinical research as the virus mutates much faster than vaccines can be updated [2].

Park and colleagues show that the antibody S2X324 potently neutralizes all SARS-CoV-2 variants, making it a candidate for therapeutic development through cross-reactivity and showing that blockage of ACE2 binding is the main mechanism of S2X324-mediated inhibition of SARS-CoV-2 which has demonstrated that B-cell immunity plays an important role to control SARS-CoV-2 [3].

B cell immunity also plays an important function in preventing severe COVID-19 and should be investigated in future studies. Zeng and colleagues have identified individuals with inferior B cell immunity after vaccination [4]. In the general population, 7.5-11.7% of individuals have poor B cell responses to COVID-19 vaccines. An individual with a titer of anti-SARS-CoV-2 spike IgG that is below 50 BAU/mL with the WHO IS (20/136) is considered a poor B cell response to COVID-19 vaccination at 14–90 days after the last vaccine dose.

Therefore, identification of populations with poor B cell immunity might be beneficial to encourage the use of SARS-CoV-2 BA.4/5 mRNA vaccines in vulnerable populations such as children, old adults, and immunocompromised people [5]. By isolating the cross-reactive single B cell from patients, these cross-reactive B cells may facilitate the development of potent monoclonal antibodies against future variants [6].

References

[1] McCallum M, Czudnochowski N, Rosen LE, et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement, Science. 2022; 375: 864–868.

[2] Zeng Q, Huang G, Li YZ, Xu Y, Tackling COVID19 by exploiting pre-existing cross-reacting spike-specific immunity, Mol. Ther. 2020; 28: 2314–2315.

[3] Park YJ, Pinto D, Walls AC, et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science. 2022; 378(6620): 619–627.

[4] Zeng Q, Yang X, Lin BY, et al. Immunological findings in a group of individuals who were poor or non-responders to standard two-dose SARS-CoV-2 vaccines. Vaccines (Basel). 2023;11(2):461. doi: 10.3390/vaccines11020461.

[5] Scheaffer SM, Lee D, Whitener B, et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat Med. 2023; 29(1):247–257.

[6] Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020; 584(7819):115–119.